A condensed guide to undergraduate life in Electrical and Computer Engineering at Rice University

2019 - 2020
LETTER FROM THE CHAIR

Welcome to the Electrical and Computer Engineering Department at Rice University!

Rice ECE is globally known for extensive reach across disciplines, including designing next-generation wireless networks; nanophotonics; terahertz laser spectroscopy; digital systems processing; neuroengineering; machine learning and data science; healthcare devices and analytics; and a plethora of other interests. Regardless of your areas of interest and goals, you will find others that share your passion.

Our students have the opportunity to participate in this world class research. Don’t wait until junior or senior year to get involved, you can be a part of a team as early as the second semester of your freshman year! We encourage students to participate in our Vertically Integrated Projects (VIP) program where students of all levels work together on a long-term, large-scale project.

In addition, all of our undergraduates can utilize the Oshman Engineering Design Kitchen (OEDK), a state-of-the-art design laboratory for Rice science and engineering undergraduate students where you can get your hands dirty and actually build the project of your dreams. At Rice ECE, we challenge you to redefine your own limits. Should you choose ECE for your education, you will be taught to think creatively and will be part of our network of knowledge.

We invite you to learn more about the Department of Electrical and Computer Engineering by finding us on social media and checking our website frequently to stay in touch with the exciting and groundbreaking achievements that happen daily in our ECE community.

And once again, welcome to Rice!

Ashutosh Sabharwal

Chair, Electrical and Computer Engineering
Professor, Electrical and Computer Engineering

HOW TO USE THIS HANDBOOK

Welcome, class of 2023! This book encompasses the Rice ECE undergraduate experience. Use it as a reference as you move forward in your academic career.

1 Letter from the Chair
3 Who are ELECs
 What do ELECs do
 What is ECE at Rice
4 What are my degree options in ECE
 Tell me about the BSEE
 Tell me about the BA
 What are specialization areas
5 What do I need to get a degree
 Specialization areas
6 Degree Planning Sheet
7 How do I declare my major
 Who can help advise me
8 How can I make an appointment
9 How can I get the most out of my time
10 Should I do an internship
 How do I find an internship
11 Should I study abroad
12 Should I do research as an undergraduate
 How can I find research opportunities
13 About Rice IEEE
14 Notes
WHO ARE ELECS

Electrical and Computer Engineers (ELECs) create, innovate and design technologies in machine learning, computing, communications, electronics and automation. ELECs use hardware and software to create better, faster, safer technologies for things like cars, aircraft, computers, smartphones, and surgical robots.

WHAT DO ELECS DO

ELECs are a diverse, smart, creative group of problem-solvers who make devices and programs that change the world. Smartphones, GPS, cars, and even things like healthcare and national security would not exist as they do today without them. ELECs go on to work in every industry imaginable, including:

- Aerospace
- Healthcare
- Entertainment
- Renewable Energy
- Gaming
- Wireless
- Wearables
- Automotive
- Security
- Aviation

WHAT IS ECE AT RICE

At Rice University we focus on the following four areas of research and study:

COMPUTER ENGINEERING (CE)

Computer Engineering is about designing, realizing and evaluating computing, communication and storage systems: making them fast, secure, reliable, and efficient. Our research covers the full stack of systems, from integrated circuits, VLSI, architecture to operating systems. We are particularly interested in emerging platforms and application domains, such as Internet of Things (IoT), machine learning, and healthcare.

DATA SCIENCE/SYSTEMS (DS/SYS)

Data Science is a growing field that integrates the tools and techniques involved in data acquisition, analytics and storage, to enable extraction of meaningful information from massive data sources.

In Systems, signal processing is the analysis and transformation of signals (measurements taken over time and/or space) in order to understand, simplify or recast their structure. Image and video analysis and compression, computational neuroscience, and wireless networking systems are in this field.

NEUROENGINEERING (NEURO)

The brain is essentially a circuit. Neuroengineering is a discipline that exploits engineering techniques to understand, repair, and manipulate human neural systems and networks. Rice is uniquely positioned to lead this field thanks to the broad, interdisciplinary research performed in conjunction with the world's largest medical center (Texas Medical Center), steps away from the Rice University campus.

PHOTONICS, ELECTRONICS, AND NANODEVICES (PEN)

This field strives to improve understanding of the interaction of light and matter, along with the application of that knowledge to develop innovative devices and technologies. PEN has applications in energy and healthcare, among others.
WHAT ARE MY DEGREE OPTIONS IN ECE

ECE has two degree programs for undergraduates, the Bachelor of Science in Electrical Engineering (BSEE) and the Bachelor of Arts with a major in Electrical Engineering (BA).

TELL ME ABOUT THE BSEE

The BSEE is organized around a core of required courses and a selection of elective courses from four specialization areas: Computer Engineering; Data Science/Systems; Neuroengineering, and Photonics, Electronics and Nano-devices.

The BSEE is the usual degree taken by students planning a career in engineering practice and can reduce the time required to become a licensed professional engineer. Accreditation and professional licensure are important for some careers, and many states require licensure for those providing engineering services directly to the public, for example, as a consultant. The BSEE is accredited by the Engineering Accreditation Commission (EAC) of ABET.*

A BSEE program must have a total of at least 134 semester hours. A course can satisfy only one program requirement. Students who place out of required courses without transcript credit must substitute other approved courses in the same area.

TELL ME ABOUT THE BA

The BA degree provides a basic technical foundation in electrical and computer engineering through a subset of the core and specialization courses offered by the department. The program leading to the BA degree is not accredited by the EAC of ABET and is often pursued by students as a component of a double major or dual degree program.

A BA program must have a total of at least 123 semester hours. A course can satisfy only one program requirement. Students who place out of required courses without transcript credit must substitute other approved courses in the same area.

WHAT ARE SPECIALIZATION AREAS

Each ECE degree program requires a minimum number of semester hours in: core areas; math and science; computation; and design. Each also requires a minimum number of specialization courses.

For the BSEE program, a minimum of 6 specialization area courses is required, including 3 or more in one area, and courses from at least 2 areas.
For the BA program, a minimum of 4 specialization area courses is required, including 2 or more in one area, and courses from at least two areas.

For both programs, each course must be at least 3 semester hours. The department may add or delete courses, and graduate courses and equivalent courses from other departments may be used to satisfy area requirements with permission. Check with your Divisional Advisor (DA) or Major Advisor for more information.

*ABET, Inc., 415 North Charles Street, Baltimore, MD 21201
eac@abet.org
WHAT DO I NEED TO GET A DEGREE

You must meet the required hours for your program, and include the courses in this column as well as your specialization area courses and electives that are required. For specific requirements on each degree program, sample schedules and forms, please visit ga.rice.edu or bit.ly/2Lds82V.

Math/Science Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 121</td>
<td>General Chemistry I with Lab (or CHEM 111)*</td>
</tr>
<tr>
<td>ELEC 261</td>
<td>Electronic Materials and Quantum Devices</td>
</tr>
<tr>
<td>ELEC 303</td>
<td>Random Signals</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Single Variable Calculus I (or MATH 105)</td>
</tr>
<tr>
<td>MATH 102</td>
<td>Single Variable Calculus II (or MATH 106)</td>
</tr>
<tr>
<td>MATH 212</td>
<td>Multivariable Calculus (or MATH 221)</td>
</tr>
<tr>
<td>MATH 355</td>
<td>Linear Algebra (or MATH 354 CAAM 334 or 335 Matrix Analysis)</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>Mechanics with Lab (or PHYS 111)</td>
</tr>
<tr>
<td>PHYS 102</td>
<td>Electricity and Magnetism with Lab (or PHYS 112)</td>
</tr>
</tbody>
</table>

Computation Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 140</td>
<td>Computational Thinking</td>
</tr>
</tbody>
</table>

ECE Core Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC 220</td>
<td>Fundamentals of Computer Engineering</td>
</tr>
<tr>
<td>ELEC 240 & 241</td>
<td>Fundamentals of Electrical Engineering I</td>
</tr>
<tr>
<td>ELEC 242 & 244</td>
<td>Fundamentals of Electrical Engineering II</td>
</tr>
<tr>
<td>ELEC 301</td>
<td>Introduction to Signals, Systems, and Learning *</td>
</tr>
<tr>
<td>ELEC 305</td>
<td>Introduction to Physical Electronics</td>
</tr>
<tr>
<td>ELEC 326</td>
<td>Digital Logic Design</td>
</tr>
</tbody>
</table>

Design Lab: Choose one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC 327</td>
<td>Implementation of Digital Systems</td>
</tr>
<tr>
<td>ELEC 332</td>
<td>Electronic Systems: Principles and Practices</td>
</tr>
<tr>
<td>ELEC 364</td>
<td>Photonic Measurements: Principles and Practices</td>
</tr>
</tbody>
</table>

Design:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC 494</td>
<td>Senior Design (2 Semesters)</td>
</tr>
</tbody>
</table>

* Not required for the BA.

Note: The sequence of COMP 140, COMP 182, and COMP 215 is recommended in addition for the Computer Engineering specialization as these courses are prerequisites for many of the Computer Science courses.

SPECIALIZATION AREAS

Computer Engineering:

- COMP 321 Introduction to Computer Systems
- COMP 382 Reasoning About Algorithms
- COMP 430 Introduction to Database Systems
- ELEC 323 Principles of Parallel Programming
- ELEC 411 Microwave Engineering
- ELEC 421 Operating Systems and Concurrent Programming
- ELEC 422 VLSI Systems Design
- ELEC 423 Digital Integrated Circuits
- ELEC 424 Mobile and Embedded System Design and Application
- ELEC 425 Computer Systems Architecture
- ELEC 429 Introduction to Computer Networks
- ELEC 442 Introduction to Analog Integrated Circuits
- ELEC 446 Mobile Device Applications Project

Data Science/Systems:

- COMP 330 Tools and Models for Data Science
- DSCI 302 Data Science Tools and Models
- DSCI 303 Machine Learning for Data Science
- ELEC 306 Applied Electromagnetics
- ELEC 430 Digital Communication
- ELEC 431 Digital Signal Processing
- ELEC 432 Mobile Bio-Behavioral Sensing
- ELEC 433 Architecture for Wireless Communications
- ELEC 434 Advanced High-Speed System Design
- ELEC 436 Fundamentals of Control Systems
- ELEC 437 Introduction to Communication Networks
- ELEC 438 Wireless Networking for Under-Resourced Urban Communities
- ELEC 439 Data and Systems
- ELEC 447 Introduction to Computer Vision
- ELEC 475 Learning from Sensor Data
- ELEC 498 Introduction to Robotics
- MECH 488 Design of Mechatronic Systems
- STAT 413 Introduction to Statistical Machine Learning

Neuroengineering:

- ELEC 380 Introduction to Neuroengineering
- ELEC 382 Introduction to Computational Neuroscience
- ELEC 483 Machine Learning and Signal Processing for Neuroengineering
- ELEC 484 Human Neuro Imaging
- ELEC 485 Fundamentals of Medical Imaging I
- ELEC 486 Fundamentals of Medical Imaging II
- ELEC 488 Theoretical Neuroscience: From Cells to Learning Systems
- ELEC 489 Neural Computation

Photonics, Electronics, and Nano-devices:

- ELEC 262 Introduction to Waves and Photonics
- ELEC 306 Applied Electromagnetics (or PHYS 302)
- ELEC 361 Quantum Mechanics for Engineers (or PHYS 311)
- ELEC 365 Nanomaterials for Engineers
- ELEC 460 Physics of Sensor Materials and Nanosensor Technology
- ELEC 461 Solid State Physics (or PHYS 412)
- ELEC 462 Optoelectronic Devices
- PHYS 416 Computational Physics
WHAT IS THE DEGREE PLANNING SHEET

The degree planning sheet is an essential part of your ECE undergraduate experience. A sample of this sheet can be found below. The form's purpose is to make sure you are on track to graduate and are getting the most out of your academic experience. Review your academic goals frequently and use this sheet to help you. Please visit ece.rice.edu for forms and curriculum. When planning, consult Degree Works to track your progress towards completion of degree requirements.

Sample of the BSEE Degree Planning Sheet

<table>
<thead>
<tr>
<th>MATH/SCIENCE</th>
<th>Completed? (check if completed)</th>
<th>From AP credit or Race</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 101 or 115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILBC 251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILBC 360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 101 or 105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 156 or 155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSAM 186 or 185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH/STAT 111</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECE CORE</th>
<th>Completed? (check if completed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILBC 260</td>
<td></td>
</tr>
<tr>
<td>ILBC 280</td>
<td></td>
</tr>
<tr>
<td>ILBC 345</td>
<td></td>
</tr>
<tr>
<td>ILBC 350</td>
<td></td>
</tr>
<tr>
<td>COMP 140</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELECTRICAL, ELECTRONIC, AND NANODEVICES</th>
<th>Course #</th>
<th>Course Name</th>
<th>Completed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEN - Specialization Course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEN - Specialization Course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEN - Specialization Course</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Engineering</th>
<th>Course #</th>
<th>Course Name</th>
<th>Completed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE - Specialization Course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE - Specialization Course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE - Specialization Course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Science/Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNS - Specialization Course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSS - Specialization Course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSS - Specialization Course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNS - Specialization Course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuroengineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEURO - Specialization Course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEURO - Specialization Course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEURO - Specialization Course</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Consult your Degree Works audit as you complete this degree plan. (At least three courses must be from one specialization area.)

Advisor:
Date:
Advising for: Semester/Year

*Typically approved courses include: BIOC 201, CAAM 356, CAAM 378, CHEM 122 with lab, MATH 211, and MATH 222.
HOW DO I DECLARE MY MAJOR

The School of Engineering encourages students to declare their majors in the spring semester of their freshman year before registering for your sophomore year. To declare, you must make an appointment with a Major Advisor and bring:

1) A printed, filled-out copy of the ECE Degree Planning Sheet either for the BSEE or BA
2) A printed copy of your unofficial transcript,
3) A printed copy of your completed declaration form (located in Esther)

After your advisor has approved your paperwork, bring it to Norma Santamaria in Abercrombie B203. Once you have seen Norma, take your original declaration form and turn it in to the Registrar's Office.

WHO CAN HELP ADVISE ME

You have to meet with your Divisional Advisor (DA) at least once during O-week, but we suggest you also make it a habit to talk to them periodically regarding your academic plans. All DAs have been trained to answer exactly the types of questions you have.

If your DA is not from the ECE department and you would like more help, you don’t need to wait until you’ve declared to meet with a Major Advisor. A list of Major Advisors is below. They know the latest on the curriculum and have guided many ELECs towards their Rice degree. The ECE Undergraduate Program Administrator, Norma Santamaria (ns37@rice.edu), can help with questions about course schedules, ELEC 490 and VIP (ELEC 491) registration, procedures for declaring a major, and applying to the Masters of Electrical Engineering (MEE) program.

Make sure you consult the School of Engineering Advising Booklet and the IEEE Handbook for more tips and information on advising - at least once per semester and especially before registering for ELEC 301, the design lab and senior design. Once you have declared, you should meet with your assigned Major Advisor once per semester. You must bring a printed and filled out copy of the ECE Degree Planning Sheet.
HOW CAN I MAKE AN APPOINTMENT

Contact a faculty member from the list on the previous page. This ensures the best advising experience possible. ECE majors should meet their advisor regularly to discuss their program and to check for any possible changes in courses and degree requirements.

I HAVEN’T DECLARED, BUT I’M INTERESTED

Students interested in ECE but who have not yet declared are encouraged to contact a faculty member in their area of interest or the Undergraduate Committee (UGC) Chair for information.

WHO ARE MY PEER ACADEMIC ADVISORS

The ECE Peer Academic Advisors are upper-level students able to help their peers with academic issues related to Electrical and Computer Engineering. They are a resource that can provide advice on class scheduling, internships, resume preparation, etc. We encourage freshmen and sophomores to consult the peer advisors at their residential college on matters concerning their academic careers. Keep in mind that some Peer Academic Advisors may not be on campus until after O-Week. More info can be found here: oaa.rice.edu/peer-academic-advisors

CAN I TRANSFER CREDITS

Transfer credit for a particular course must be approved by the faculty member teaching that course in that department. Consult the course database on courses.rice.edu to determine the current instructor. For general questions on transfer credit consult with the UGC.

More information can be found here: oaa.rice.edu/transfer-credit-advisors

ASK. PLAN. SUCCEED!
HOW CAN I GET THE MOST OUT OF MY TIME

ECE is a vibrant community with many ways to get involved!
Non-ECE-related clubs can be found in Rice Clubs Central studentcenter.rice.edu/student-activities.

IEEE
The Rice chapter of IEEE is a student organization dedicated to informing ECE students of what is going on in the department, preparing the undergrad ECE majors for life “beyond the hedges,” encouraging freshmen and sophomores to major in Electrical Engineering, and creating a greater sense of community among the ELECs. Visit ieee.rice.edu for more information.

SHELECS
SHELEcs: Undergraduate Women in Electrical Engineering is a student organization on campus which supports undergraduate women in electrical engineering. It empowers ECE women through community, networking, and mentorship. To join or contact us, please email shelecs@rice.edu.

WOMEN ExCEL
Women Excel is a network of women in the ECE Department at Rice that aims to provide community, mentoring, and cultural enrichment for ECE graduate students. We furnish a medium for networking and discussion of women-specific issues. Contact Jill Juneau (jill.c.juneau@rice.edu) for more information.

ETA KAPPA NU (HKN)
Eta Kappa Nu HKN is the electrical and computer engineering honor society for students, alumni, and other engineering professionals. Recognizing excellence in electrical and computer engineering since 1904, it is now a part of the larger IEEE organization. The Theta Rho chapter of HKN at Rice University inducts new members each spring.

TAU BETA PI (TBP)
Tau Beta Pi is the oldest engineering honor society in the United States that recognizes students who have shown a history of academic achievement as well as a commitment to personal and professional integrity. TBP provides leadership development and soft skills training for engineering students and alumni members and promotes lifelong alumnus member involvement. For more information visit https://tbp.rice.edu.

SOCIETY OF WOMEN ENGINEERS (SWE)
SWE is a non-profit educational and service organization that is committed to organizing professional and social events to help Rice women engineers succeed and advance their careers. The SWE mission is to “stimulate women to achieve full potential careers as engineers and leaders, expand the image of the engineering profession as a positive force in improving the quality of life, and demonstrating the value of diversity. Visit swe.rice.edu for more information.

NATIONAL SOCIETY OF BLACK ENGINEERS (NSBE)
Rice University's NSBE chapter is dedicated to realization of a better tomorrow through the development of programs and community outreach events intended to increase the recruitment, retention, and successful graduation of minorities in engineering. Visit nsbe.rice.edu or contact Camille Little (col11@rice.edu) for more information.

SOCIETY OF HISPANIC PROFESSIONAL ENGINEERS (SHPE)
Rice University's SHPE chapter changes lives by empowering the Latinx/Hispanic community to realize its fullest potential and to impact the world through STEM awareness, access, support and development. SHPE Rice is committed to making its members as prepared as possible for life after graduation through professional development, community outreach, and leadership development. Visit shpe-rice.weebly.com or Em Echeverria (ese3@rice.edu) for more information.
SHOULD I DO AN INTERNSHIP

Picture it: you’re a student at one of the best universities in the country. Your GPA is excellent and your professors have written strong recommendation letters, but how do you get real-world experience? This is where internships come in.

While most Rice ECE graduates have no problem finding a job after commencement, an internship can help you gain valuable on-the-job experience and real-world skills.

HOW DO I FIND AN INTERNSHIP

Many students identify internship opportunities on their own; however, there are resources on campus to help.

RICELink ccd.rice.edu/students/jobs-internships
RICELink is CCD’s job and internship database. Unlike other job search websites, employers who post in RICELink are specifically looking for Rice students and alumni. Use RICELink to apply for jobs and internships, apply to on-campus interviewing positions, schedule appointments with CCD counselors, and RSVP for events. You can also opt-in to make your profile searchable by employers.

SallyPortal alumni.rice.edu/sallyportal
SallyPortal is an online professional development hub dedicated exclusively to the Rice community. SallyPortal allows you to seek guidance from the Rice network, find a mentor, locate professional development opportunities, and engage with alumni and departments - all in the name of providing Rice students and recent graduates with the greatest possible edge.

HireOWL https://www.hireowl.com
Looking for a great way to make money and gain work experience on a schedule that works with your classes? Check out HireOwl. They can provide you with a wide variety of paid part-time job opportunities, short-term projects, and internships. Signing up is easy!

ECE students have interned at:

- Google
- National Instruments
- Texas Instruments
- Microsoft
- Boeing
- Chevron
- HP Enterprise
- NASA
- Airware
- Proteus Digital Health
- Sensorfield, LLC
- HBK Capital Management
- Subaru Telescope
- Intuitive Machines
- CenterPoint Energy
- Alert Logic
- Freescale Semiconductor
- C&J Energy
- Shell
- Viasat
- LyondellBasell
- Amazon
- FlightAware
- ...and more!
SHOULD I STUDY ABROAD

As an engineer, you will be called to solve problems and find solutions on a global scale; studying abroad is the ideal opportunity for you to gain the skills necessary to function in this global context. It shapes who you will become during your Rice career and beyond.

“Study abroad has helped me understand how to be a global thinker and to understand the impact of my decisions (engineering or otherwise). My time in Singapore made me realize in which aspects of education we, as a country, excel, and in which aspects we have something to learn from other cultures and institutions.

An abroad experience helps you to appreciate what you have at home in addition to what there is out there. I believe I’m better equipped to understand the problems we (the next generation of engineers) face at the global scale. I’m proud to say I now know how the strengths of Rice ECE fit into a larger puzzle of academia and research around the world.”

- Latané Bullock

Meet with your Major Advisor(s) early, or by fall of sophomore year to discuss the possibility of studying abroad, and how it will integrate with the department’s curriculum and course sequence.

“An important part of the education you receive at Rice should come from outside a classroom. It should include immersing yourself in a foreign culture and communicating with completely different people.

Studying abroad in Hong Kong has made me aware of a completely different reality I didn’t even know about, and taught me things about myself I wouldn’t have learned by just studying in the library. And studying abroad as an ELEC isn’t as hard as most people think! Most universities have ELEC departments with plenty of courses available for transfer credit.”

- Manuel Pacheco

Interested? Attend the Rice Study Abroad Fair! September 13th, 1-4pm in Brochstein Pavilion. Questions: abroad@rice.edu

I found my internship through the DAAD RISE program, which is organized by the German Academic Exchange Service. I was hosted as an intern by the Control Systems Group at the Technical University of Berlin (TUB). During my internship, I developed a novel cycle-based communication algorithm for reducing the communication load of wireless sensor networks. Outside of work, I’ve had lots of fun exploring Berlin, learned about German culture and made some great friends.

- Tianyi Zhang
SHOULD I DO RESEARCH AS AN UNDERGRAD

Participation in research is a fundamental part of the Rice experience, and prepares students to make a distinctive impact on the world. If you are thinking of applying to graduate school, research experience as an undergraduate can set you apart from the competition and can also give you an edge when you begin your coursework - you will know about the research process and what to expect.

The prestigious Distinction in Research and Creative Works Award, is bestowed on select undergraduates at Commencement. The award is granted for projects that produce a concrete outcome -- e.g. an essay, invention, design, musical composition--and demonstrate commitment and/or achievement above and beyond the norm. https://bit.ly/2Y3pX3W

HOW CAN I FIND RESEARCH OPPORTUNITIES

Vertically Integrated Projects (VIP) vip.rice.edu
The Vertically Integrated Projects (VIP) Program at Rice unites undergraduate education and faculty research in a team-based context. Undergraduates earn academic credits, while faculty and graduate students benefit from the design/discovery efforts of their teams. VIP at Rice extends the academic design experience, through ELEC 491, beyond a single semester. It provides the time and context to learn and practice professional skills, to make substantial contributions, and experience different roles on large multidisciplinary design/discovery teams.

The long-term nature of VIP creates an environment of mentorship, with faculty and graduate students mentoring teams, experienced students mentoring new members, and students moving into leadership roles as others graduate. Rice VIP teams are comprised of students from freshmen to graduate students, with a variety of majors and backgrounds. For more information, forms and application, visit vip.rice.edu.

Research Fairs
Make a point to attend the Discover Research Fair on Thursday, September 5th at 4:30pm in the Grand Hall of the Rice Student Center and the Summer Research Fair in January. The intention of the fair is to connect undergraduate students with research opportunities at Rice University. It is an excellent way for students to learn how to pursue research opportunities that fit their goals and interests, and to discuss research with faculty and graduate students across disciplines.

Reach out to ECE Faculty
Many ECE faculty provide research opportunities to Rice undergraduates. Visit ece.rice.edu/people to learn about the faculty in the department, and feel free to reach out to them regarding a research position. Faculty have regular research group meeings that you may ask to attend.

A team of Rice Electrical and Computer Engineering students were given the Best Environment and Sustainability Engineering Award at the 2019 Design Showcase.

The Flood Team is developing a real-time, web-enabled system to monitor flood levels throughout a municipality like Houston, which has suffered three damaging floods in recent years, topped by the devastation of Hurricane Harvey. A set of sensors spread throughout a city can provide authorities with the information they need to respond to a flood in progress. Initially, the sensor nodes are set to report local conditions every five minutes.

“Our goal is not so much to measure rainfall . . . We are much more interested in water levels on the streets and the movement of that water.”
-Alexandra Du
ABOUT RICE IEEE

The Rice Chapter of IEEE is a student organization dedicated to connecting ECE students to exciting opportunities and resources at Rice and beyond. Rice IEEE encourages freshmen and sophomores to major in Electrical Engineering and works to foster a strong community of students, faculty, and professionals. We expose students in ECE to important technical and career development topics in the field of electrical engineering by hosting weekly lunches with presentations given by industry professionals, alumni, professors, and graduate students. For more information visit the Rice IEEE website at ieee.rice.edu or seek out the Rice IEEE Handbook at ieee.rice.edu/resources/

The Ethernest is a student-run makerspace for students from all disciplines. Sponsored by the Electrical and Computer Engineering Department and run by the members of the Rice Chapter of IEEE. They hold workshops for students from all majors to try their hand at tinkering. See more at ethernest.rice.edu.

2019-2020 IEEE Officers

Chair
Tiger Yang
ty18@rice.edu

Vice Chairs
Nicole Tan
nt13@rice.edu
Kunal Rai
ksr3@rice.edu

Treasurer
Tucker Reinhardt
tbr1@rice.edu

Communications
Fredy Martinez
fjm2@rice.edu

Senior Class Reps
Manuel Pacheco
jmp11@rice.edu
Mauricio Guerrero
smg10@rice.edu

Junior Class Reps
Julia Coyner
jrc13@rice.edu
Andrew Pham
apham@rice.edu

Sophomore Class Reps
Clara Selbrede
cms27@rice.edu
Samantha Fuentes
sf26@rice.edu
Are you following us on Social Media Yet?
For the quickest updates and information follow us!

- www.facebook.com/RiceECE
- www.twitter.com/RiceECE
- www.linkedin.com/school/riceece
- www.youtube.com/c/RiceUECE

Rice Engineering
Electrical and Computer Engineering

Rice University
Electrical and Computer Engineering Dept
Abercrombie Laboratory Building
6100 Main Street, MS 366
Houston, TX 77005
713.348.4020
ece@rice.edu